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ABSTRACT: Fluorescent microscopy techniques are widely used in biological studies.
However, the spatial resolution of fluorescent microscopy is restricted by the optical diffraction
limit. In the past two decades, super-resolution imaging techniques with different principles
have been invented to visualize biomolecules at nanometer scales. The development of nearly
all these techniques is closely related to the advances in fluorescent probes. In particular, the
intrinsic properties of fluorescent probes constrain the optimal imaging performance of super-
resolution nanoscopy techniques. In this review, we summarized the recent progress in
fluorescent probe bioconjugates for super-resolution imaging techniques. Examples of these
bioconjugates include the widely used fluorescent proteins (FPs), organic dyes, quantum dots
(Qdots), carbon dots (Cdots), upconversion nanoparticles (UCNPs), aggregation induced
emission (AIE) nanoparticles, and polymer dots (Pdots). Based on the characteristics of the
existing probes and their adaptability in current imaging methods, we provide a perspective for
further development of fluorescent probes for super-resolution imaging.

1. INTRODUCTION

Direct visualization of subcellular structures and dynamic
processes, such as protein−protein interactions, the symbiotic
relationship of organelles and quantification of components, is
crucial for biology studies.1−3 To obtain this biological
information, researchers have invented a variety of imaging
techniques, including transmission electron microscopy
(TEM), cryo-electron microscopy (cryo-EM), and fluorescent
microscopy. By virtue of the high contrast achieved by the
proper staining process, we can visualize subcellular organelles
inside live cells by fluorescence microscopy. It has become the
most powerful technique in cell biology and biomedicine.4−7

However, the spatial resolution of conventional fluorescence
microscopy is constrained by the optical diffraction limit
(∼200 nm) even though an objective with high numerical
aperture (∼1.5) was equipped. The diffraction-limited
resolution hindered the performance of optical microscopy
for over a century and restricted the ability of optical
instruments to distinguish subcellular structures and dynamic
processes at nanometer scales.
Optical nanoscopy has revolutionized the study of

subcellular architecture and dynamics and is on its way to
becoming the new gold standard in fluorescence imaging.8−11

To date, different types of super-resolution fluorescence
microscopy have been invented and widely used in biological
studies. According to the working principles, super-resolution
fluorescent imaging can be categorized into four types: (i)
point spread function (PSF) modulated super-resolution
nanoscopy, including stimulated emission depletion fluores-

cence nanoscopy (STED),12−19 structured illumination mi-
croscopy (SIM),20−25 ground state depletion (GSD),26−28 and
reversible saturable optical linear fluorescence transitions
(RESOLFT);29−34 (ii) single molecule localization based
super-resolution nanoscopy (SMLM), including stochastic
optical reconstruction microscopy (STORM),35−45 photo-
activated localization microscopy (PALM);46−53 (iii) fluores-
cent probe fluctuation based super-resolution nanoscopy,
including super-resolution optical fluctuation imaging
(SOFI),54−64 Bayesian analysis of the blinking and bleaching
(Three B),65,66 super-resolution radial fluctuations (SRRF);67

(iv) sample expansion based super-resolution nanoscopy,
which is called expansion microscopy (ExM).68−73 Except for
SIM, all of these super-resolution imaging techniques are
dependent on the photophysical properties of fluorescent
probes. Each super-resolution technique shows specific
advantages and drawbacks in imaging performance. The spatial
resolution and temporal resolution are a pair of tradeoff factors
in super-resolution imaging techniques. The spatial resolution
of SMLM based nanoscopy is high while using excellent
photoswitchable probes. However, the temporal resolution of
SMLM is decreased by capturing more than thousand frames
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of image sequences. PSF modulated super-resolution nano-
scopy, such as STED and GSD, usually shows better temporal
resolution as compared with SMLM techniques. However, the
spatial resolution is dependent on the intensity of depletion
laser. The biosamples can be destroyed by the high intensity
laser illumination. Generally, SOFI, Three B, and SRRF show a
balanced spatial−temporal resolution by capturing time-
dependent frame sequences. However, all these blinking
based nanoscopy techniques need plenty of computing
power for reconstruction of super-resolution images from the
image sequences. The ExM technique shows advantages in
image acquisition by conventional microscopy. However, the
sample expansion including multiple tedious steps, suffer from
fluorophore degradation, and is not suitable for living cell
imaging.
The performance of the super-resolution fluorescence

imaging techniques is largely dependent on the optical
properties of the fluorescent probes. A new imaging technique
usually poses different photophysical challenges for fluorescent
probes, including the absorption cross sections, fluorescence
quantum yields, excited state lifetimes, photostability, stim-
ulation−depletion properties, photoswitchable properties, and

photoblinking properties. Fluorescent probes can be classified
into endogenic and exogenous probes. Endogenic fluorescent
probes mainly refer to fluorescent proteins, which can be
transfected and synthesized intracellularly with specific protein
expression. For exogenous fluorescent probes, there are
biocompatible small molecule organic dyes and nanomaterials
that including quantum dots (Qdots), carbon dots (Cdots),
upconversion nanoparticles (UCNPs), aggregation induced
emission (AIE) nanoparticles, and polymer dots (Pdots). In
this review, we discuss the fluorescent probe bioconjugates that
are suitable for super-resolution imaging. Particularly, we aim
to highlight the newly developed fluorescent probes and
discuss their photophysical properties required for further
development of the super-resolution nanoscopy.

2. ENDOGENIC FLUORESCENT PROBES FOR
SUPER-RESOLUTION NANOSCOPY

Fluorescent proteins (FPs) are a series of proteins that can be
expressed intracellularly and modified by changing amino acid
sequences.74−76 The application of FPs in super-resolution
imaging techniques has revolutionized cell biology.77,78 Hell et
al. transfected pQE30-asFP595 plasmid and expressed asPF595

Figure 1. Fluorescent proteins for super-resolution nanoscopy. (a) Repeated photoswitching of β-actin-Kohinoor expressed in live HeLa cells and
RESOLFT imaging of a live HeLa cell expressing vimentin-Kohinoor. Adapted with permission from ref 31, Copyright 2015, Nature Publishing
Group. (b) Dual channel τ-RESOLFT image of DronpaM159T labeled lifeAct and rsEGFPN205S labeled homer in brain tissue. The line profiles
quantified the improvement of spatial resolution of τ-RESOLFT. Adapted with permission from ref 32, Copyright 2014, American Chemical
Society. (c) Characterization of GMars-Q FP and comparison of wide field image with RESOLFT of cytoskeleton structures in U2OS cell. Adapted
with permission from ref 29, Copyright 2016, American Chemical Society. (d) Comparison of total internal reflection fluorescence microscopy and
PALM nanoscopy images of cryo-prepared thin section of COS-7 cell expressing Kaede tagged lysosomal transmembrane protein CD63. Adapted
with permission from ref 46. Copyright 2006, American Association for the Advancement of Science.
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protein in the bacteria Escherichia coli. Using asPF595 protein,
they demonstrated the concept of RESOLFT super-resolution
imaging technique and obtained about 90 nm spatial
resolution.33 Nagai et al. developed a Kohinoor fluorescent
protein, which is fast-switching and positively photoswitchable.
As shown in Figure 1a, they applied Kohinoor in RESOLFT
nanoscopy and obtained about 85 nm resolution of vimentin in
living HeLa cells with ultralow laser intensity (0.004 J/cm2).31

To dynamically observe subcellular organelles, Hell et al.
introduced a time correlated single photon counting card into
traditional RESOLFT and invented dual channel modality τ-
RESOLT nanoscopy.32 They developed two types of reversibly
switchable fluorescent proteins (rsFPs), named DronpaM159T

and rsEGFPN205S. The spatial resolution was improved to
about 62 nm in living brain tissue (Figure 1b).32

To improve the photophysical properties of FPs in
RESOLFT nanoscopy, Sun et al. developed a monomeric
rsFP termed GMars-Q, which shows low residual off-state
fluorescence and high photostability (Figure 1c).29 They
achieved parallelized RESOLFT nanoscopy imaging of a
variety of subcellular organelles, such as endoplasmic
reticulum, microtubules, intermediate filaments, and the
Golgi complex in mammalian cells. Furthermore, they
developed GMars-T rsFP with their photophysical properties
suitable for both RESOLFT and SOFI nanoscopy, and
demonstrated about 80 nm spatial resolution of microtubules
in U2OS cell.79 With regard to rsFPs, Xu et al. developed a

Figure 2. Organic dyes for super-resolution nanoscopy. (a) Chemical structures of SiR-tubulin and SiR-actin. SIM images of SiR-tubulin and SiR-
actin labeled human fibroblasts (middle panel); STED image (deconvoluted by Richardson-Lucy algorithm) of SiR-tubulin labeled centrosomal
microtubules (right up-panel); STED image (raw data) of SiR-actin labeled axons of rat primary hippocampal neurons (lower-right panel). Adapted
with permission from ref 85, Copyright 2014, Nature Publishing Group. (b) Chemical structure and spectrum of phalloidin conjugated PA-SiR.
PALM images of phalloidin conjugated PA-SiR labeled actin in COS-7 cells and line-scan intensity across filopodial structure (fwhm = 45 nm).
Adapted with permission from ref 91, Copyright 2016, John Wiley and Sons. (c) Chemical structures and characterizations of MPR-IgG and TMR-
IgG. Comparison of wide-field and PALM image of MPR-IgG labeled α-tubulin. Adapted with permission from ref 94, Copyright 2019, American
Chemical Society. (d) SOFI image of Alexa 647 immunolabeled β-tubulin network of COS-7 cells. Adapted with permission from ref 101,
Copyright 2010, John Wiley and Sons. (e) Depth encoded 3D-SOFI nanoscopy images of Alexa647 labeled mitochondria in fixed C2C12 cells (left
panel). Enlarged region and line-scan profiles of lateral and axial resolution with widefield, second-order SOFI and third-order SOFI, respectively
(right panel). Adapted with permission from ref 103, Copyright 2014, Nature Publishing Group. (f) Multiphase retrieval combined 3D-balanced
SOFI images of Alexa 647 labeled microtubule in HeLa cells, mouse hippocampal primary neurons, and RAW macrophage. Adapted with
permission from ref 104, Copyright 2018, Nature Publishing Group.
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monomeric green rsFP Skylan-S, which shows high photo-
stability and an improved fluorescence fluctuation suitable for
higher-order SOFI nanoscopy.80 Super-resolution imaging of
Skylan-S labeled tubulin structures and clathrin-coated pits
(CCPs) in living U2OS cells was demonstrated by third-order
SOFI nanoscopy and a ∼90 nm resolution of CCPs structure
was obtained.80

In 2006, Betzig et al. invented PALM technique and initially
applied photoactivatable fluorescent protein (PAFP) in this
super-resolution imaging technology. PALM is dependent on
sparsely distributed fluorescent signals collected from each
photoactive probe within a diffraction-limited region. Combin-
ing with single-particle localization and image-stacking
algorithms, the precise location of an individual molecule can
be extracted and reconstructed. They chose tetrameric Kaede
and oligomers of EosFP PAFPs for functional subcellular
structure imaging.46 By fusing PAFP Kaede with the lysosomal
transmembrane protein CD63 in COS-7 cells, they obtained
PALM images with about 10 nm resolution and revealed small
associated membranes that may represent interacting between
lysosomes and late endosomes (Figure 1d). Dedecker et al.
developed a green-to-red photoconvertible Dronpa FPs with
high brightness, low photobleaching, and distinct photo-
blinking by using evolutionary and structure-driven design
strategy.81 One of the screened Dronpa mutants, pcDronp2,
was tagged to human β-actin in HeLa cells and applied in
PALM and SOFI imaging techniques. Furthermore, they
developed enhanced fluorescence GFP with higher expression
levels and obtained ∼70 nm spatial resolution of vimentin in
living HeLa cells.82 Xu et al. developed Quick-SIMBA, a high
temporal−spatial resolution nanoscopy that combined single
molecule localization microscopy with Bayesian localization
microscopy.83 Combined with a newly developed photo-
convertible FP, pcStar, they revealed a specific “parallel three-
pillar” structure of the neuronal−glial cell junction in
Drosophila embryos.83

Boyden et al. developed protein-retention expansion
microscopy (proExM) that use genetically encoded fluorescent
proteins to visualize cytoskeletal structures and mammalian
brain circuitry on conventional diffraction-limited microscope.
Various fluorescent proteins with emission spectra ranging
from blue to near-infrared, such as mEmerald, EYFP, and
mRuby2, were examined to report signals in the proExM
workflow. However, the fluorescence retention after sample
expansion is ∼50% of their initial fluorescence intensity.84

Similarity, Vaughan et al. used GFP, YFP, and Ds-red fusion
protein to reveal nanoscale intracellular structures in cultured
cells and mouse brain tissue, which represented the rapid
dissemination of ExM technology.70 The endogenous fluo-
rescent proteins exhibited unique advantages for living cell
super-resolution imaging. However, the fluorescent brightness
and photostability are still key limitations for long-term
dynamic imaging.

3. EXOGENOUS FLUORESCENT PROBES FOR
SUPER-RESOLUTION NANOSCOPY
3.1. Small Molecule Organic Dyes (Dyes). Organic dyes

with different properties and functions were extensively used in
super-resolution nanoscopy and biological studies. Here, we
focus on some representative dyes with improved photo-
physical properties in recent years. To avoid the green
autofluorescence generated from biological samples when
excited by UV or blue light, red-emissive dyes are often better

choices. Rhodamine dyes have long been recognized as a great
framework for building small molecule probes, as the
rhodamines show excellent quantum yields. Recently, rhod-
amine and its derivatives were modified to apply in super-
resolution imaging. Johnsson et al. designed and synthesized
two types of silicon containing rhodamine (Silicon−Rhod-
amine, SiR) derivates with tubulin and actin targeting
functions, called SiR-tubulin and SiR-actin (Figure 2a).85

Both of these SiR dyes show far-red emission, excellent
brightness, photostability, and efficient subcellular labeling
capability. As demonstrated in STED nanoscopy, the ring of
the centrosomal microtubules along the longitudinal axis was
resolved in living human fibroblasts and the polar angle
between two neighboring centrioles is about 39° ± 13°. In
addition, the actin rings labeled with SiR-actin in hippocampal
neurons are observed with unprecedented resolution.85 By
conjugation Si-Rhodamine with a commercial DNA-targeted
dye Hoechst 33342, they achieved live-cell nuclei super-
resolution imaging.86 In STED nanoscopy, 660 and 775 nm
depletion lasers are advantageous, as they cause less
autofluorescence and photobleaching. Hell et al. developed a
series of orange-red emission (618 nm) membrane-permeant
rhodamine-based fluorescent probes for single- and dual-color
STED nanoscopy in living HeLa cells. About 40−60 nm spatial
resolution was obtained.87 Furthermore, they synthesized
functionalized SiR probes with large Stokes shift and emission
spectrum ranging from 650 to 700 nm and demonstrated
multicolor STED nanoscopy in living cells.88−90

SiR dyes show great potential for several super-resolution
imaging techniques. Besides the STED nanoscopy, SiR dye and
its derivates have also been widely used in SMLM. Lavis et al.
synthesized a photoactivatable SiR dye (PA-SiR) by changing
N-substitution patterns and replacing the xanthene oxygen
with a dimethylsilicon moiety to shift the maxima absorption
and emission to longer wavelength (Figure 2b).91 The
chemical structure indicated that acylation of the rhodamine
nitrogen atoms leads the PA-SiR to a nonfluorescent lactone
form. They demonstrated PALM imaging of COS-7 cell with
phalloidin conjugated PA-SiR. The spatial resolution of PA-SiR
labeled F-actin is about 45 nm with 5.3 nm localization
precision.91 Rivera-Fuentes et al. synthesized a photoactivat-
able rhodamine derivative probe for which fluorescent
response depends on esterase activity.92 This study introduced
a mechanism for enzymatic activity sensing in living cells using
PALM nanoscopy.92 The on-time photochromic switching is
one of the key characteristics for fluorescent probes in SMLM.
Xiao et al. developed photochromic rhodamine dyes with long-
term on-time switching by installing a carboxyl group close to
the lactam site in rhodamine structures to improve the
intramolecular acidic environment, thus stabilizing the photo-
activated zwitterionic structure.93 As shown in Figure 2c, Xiao
et al. developed a quanternary piperazine-substituted rhod-
amine (MPR) probe to alleviate the brightness loss caused by
twisted intramolecular charge transfer (TICT) upon photo-
excitation. They introduced a quaternary piperazine moiety to
replace the dimethylamino group in tetramethyl rhodamine
(TMR). The electronic inductive effect resulted in about 0.93
quantum yield of MPR, which is 2-fold brighter than TMR. By
conjugation with IgG, MPR-IgG show significant improve-
ments in single particle brightness and localization precision
(10.08 ± 0.19 nm). In PALM nanoscopy, MPR-IgG labeled
microtubules in HeLa cells revealed refined structures as
compared with conventional wide-field microscopy.94 Tetin et
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al. reported a series of pH-dependent photoswitchable
rhodamine-based fluorescent probes with inherent blinking
and applied them in STORM nanoscopy to achieve ∼70 nm
spatial resolution.95 Besides the rhodamine and its derivates,
Xanthene, cyanine dyes, BODIPY based and commercial dyes
are also widely used in SMLM nanoscopy.96−100

The SMLM nanoscopy improved spatial resolution by
sacrificing the temporal resolution, whereas SOFI nanoscopy
that based on fluctuation property of fluorescent probes has a
balanced spatial−temporal resolution. The commercial Alexa
dyes are widely used in SOFI nanoscopy. In 2010, Weiss et al.
introduced Alexa 647 into SOFI nanoscopy for the first
time.101 As shown in Figure 2d, after SOFI reconstruction,
about 169 nm spatial resolution of Alexa 647 immunolabeled
β-tubulin network in COS-7 cells was obtained.101 Leuteneg-
ger et al. introduced a multiplexed imaging scheme to obtain
3D-SOFI images simultaneously rather than sequential

imaging of multiple depth positions.57,102 3D-SOFI images
encoded by z-axial depth of Alexa 647 stained mitochondria in
fixed C2C12 cells shown in Figure 2e indicated the lateral
resolution and axial resolution are 110 and 500 nm,
respectively.103 Lasser et al. used Alexa 647 dye to label
microtubules in HeLa cells, mouse hippocampal primary
neurons, and RAW macrophage in multiplane phase retrieval
combined 3D-balanced SOFI (Figure 2f).104

Modified DNA probes with chemical fluorophores was
originally used for Expansion Microscopy. Boyden et al. use
gel-linkable DNA labels bearing Alexa 488, Atto 565, or Atto
647N to achieve nanoscale ExM imaging (∼70 nm) of thick
brain tissues on diffraction-limited microscope.69 Cyanine
fluorophores and Alexa 647 were not recommended because
they undergo strong bleaching during the polymerization
process in the ExM protocol. Boyden et al. and Vaughan et al.
improved the ExM method with simplified workflows that use

Figure 3. Qdots for super-resolution nanoscopy. (a) Wide-field and SOFI images of Qdots 625 labeled 3T3 cells. Adapted with permission from ref
58, Copyright 2009, National Academy of Sciences. (b) Wide-field and differently ordered SOFI images of Qdots 800 labeled tubulin network of
3T3 cells and corresponding line-scan intensity profiles of three regions in wide-field and SOFI nanoscopy. Adapted with permission from ref 109,
Copyright 2010, Optical Society of America. (c) STORM and wide-field images of Qdots 565 and Qdots 705 labeled microtubules in HepG2 cells
and profiles of specific regions in upper panel. Adapted with permission from ref 115, Copyright 2015, American Chemical Society. (d) STED,
ThreeB, and SIM nanoscopy images of Qdots labeled microtubules in HeLa cells. Adapted with permission from ref 116, Copyright 2016,
American Chemical Society. (e) STED images with different excitation conditions and confocal images of Qdots 705 labeled vimentin fibers. Line
profiles indicated by white lines and arrows. Adapted with permission from ref 117, Copyright 2015, Nature Publishing Group. (f) ExM and
ExSOFI images of Qdots 655 labeled microtubules and line-profiles indicated by white arrows. Dual-color ExM and Ex-SOFI images of Qdots 605
labeled clathrin-coated pits and Qdots 655 labeled microtubules. Multicolor ExM and Ex-SOFI images of Qdots 605 labeled acetylated
microtubule, Qdots 655 labeled tyrosinated microtubule, and Qdots 705 labeled detyrosinated microtubules. Adapted with permission from ref 73,
Copyright 2018, The Royal Society of Chemistry.
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secondary antibodies conjugated with chemical fluorophores to
visualize nanoscale biomolecules in cells and mammalian
tissues.70,84 Small-molecule fluorophores extensively used in
these ExM variants were Alexa Fluor (Alexa 405, Alexa 488,
Alexa 546, Alexa 568) dyes and Atto dyes (Atto 488, Atto 565,
Atto 647N). However, most of these organic dyes suffer acute
fluorescent loss caused by physical dilution and chemical
treatment, and the fluorescent retained less than 50% of their
original fluorescence intensity, which may constrain the
detection of low abundant biomolecules.84 Chung et al.
introduced a similar super-resolution method, called magnified
analysis of the proteome (MAP), which uses more than 100
fluorescently conjugated antibodies for multiple rounds of
immunolabeling of tissue’s expanded proteome, demonstrating
nanoscale imaging of multiscale organization of intact mouse
tissues.105

Small molecule dyes with specialized properties were also
involved in the combination of ExM with other super-
resolution microscopy, including SIM and STED.72,106−108

As SIM do not have special requirements for fluorophores,
Cahoon et al. selected commonly used Alexa Fluor 488, Alexa
Fluor 555, and Atto 647N secondary antibodies in the
combination method of ExM and SIM, which enables
visualization of the dual-layered synaptonemal complex (SC)
and accurate 3D SC organization of Drosophila. Helge Ewers et
al. used Abberior Star Red coupled secondary antibody for
labeling microtubules and demonstrated a 10 nm spatial
resolution in 2D and a 50 nm resolution in 3D using ExSTED
super-resolution microscopy.72 Small molecule dyes are
versatile probes and widely used in fluorescent imaging. Dyes
with modified structures and targeting groups can be
specifically delivered to subcellular organelles. However, the
resistance to photobleaching is an important factor for super-
resolution imaging.
3.2. Quantum Dots (Qdots). Quantum dots are semi-

conductor nanoparticles with tunable emission wavelength by
varying the particle diameter, which is determined by quantum
confinement effect. Bare Qdots generally show irregular
photoblinking under laser excitation. The photoblinking of
Qdots is a drawback and should be avoided for industrial
applications, such as lightning display and long-term single-
particle tracking. However, the photoblinking property is
suitable for SOFI nanoscopy. Enderlein et al. proposed the
principle of SOFI nanoscopy and demonstrated resolution
enhancement with Qdots labeled microtubule in 3T3 cells
(Figure 3a).58 Weiss et al. developed SOFI algorithm by
introducing a reweighting optical transfer function method to
improve the spatial resolution in SOFI reconstruction. As
shown in Figure 3b, the spatial resolution of Qdots 800 labeled
tubulin network in 3T3 fibroblast show about 1.98-fold
enhancement in second-order SOFI as compared with
conventional widefield microscopy.109

Compared with other photoswitchable probes, QDs spend a
rather short time in the off-state, thus limiting their application
in SMLM nanoscopy. An interesting technique allows for blue-
shifting of the emissions of Qdots stochastically in oxygen
containing solutions can address this problem and make them
suitable for STORM nanoscopy. This blue shift was attributed
to the reduction of CdSe core caused by photo-oxidation and
the quantum confinement effect.110−114 Based on this
principle, Kner et al. optimized the blueing speed by
optimizing the laser intensity and the mounting medium
(20% v/v glycerol in phosphate-buffered saline) to balance the

photon number and the precise localization in STORM
nanoscopy. As shown in Figure 3c, they demonstrated that 38
nm spatial resolution STORM nanoscopy with blueing
processed Qdots 565 and Qdots 705 labeled microtubules in
HepG2 cells.115 Xi et al. systematically investigated applica-
tions of Qdots in STED, SIM, and ThreeB nanoscopy (Figure
3d).116 They chose a 775 nm continuous-wave depletion laser
in STED nanoscopy rather than a pulsed picosecond laser to
alleviate the re-excitation and two-photon excitation of Qdots
705. An 85 nm spatial resolution of Qdots 705 labeled
microtubule network in HeLa cells was achieved. Furthermore,
they evaluated the continuity by calculating the pixel numbers
of the microtubule structures. At last, the Qdots based ThreeB
nanoscopy reveal 67 nm spatial resolution in microtubule
network. ThreeB nanoscopy allows multiple emitters within
the focal volume when in the on-state, and this statistical
blinking can be used to generate the super-resolution image.
However, this technique relies heavily on computation power
to process a large amount of images for reconstruction of a
relatively small image data set.116

Hell et al. utilized commercial ZnS-coated CdSe Qdots
(∼650−770 nm emission band) in STED nanoscopy.117 In
their experiments, they discovered that the Qdots can be re-
excited by the 775 nm pulse depletion laser (1.2 ns pulse
duration), even though far away from the emission spectra tail
under about 300 mW average power. By varying the temporal
delay between the excitation and depletion pulses, they proved
that the STED beam can directly inhibit the spontaneous
radiative decay of the on-state. As shown in Figure 3e, Qdots
705 labeled cellular vimentin fibers was resolved in STED
nanoscopy with a 2.7-fold improvement of spatial resolution as
compared with confocal microscopy.117 Qu et al. achieved
about 21 nm resolution in STED nanoscopy with commercial
CdSe@ZnS Qdots 526 using 488 nm excitation laser and a 592
nm depletion laser to alleviated the halo effect of Qdots re-
excitation.118 To satisfy the Nyquist sampling criteria, the
labeling density of nanoscopy is a key factor to obtain high-
quality super-resolution images, especially in ExM-correlated
approaches, i.e., Ex-SOFI and Ex-STED. Sun et al. have
improved subcellular labeling density and fluorescence
retention in expansion enhanced nanoscopy.73 As shown in
Figure 3f, by optimizing the concentration of glutaraldehyde
(0.25%) and the incubation time (30 min) of the labeling
procedure, ExM nanoscopy was obtained in Qdots 655 labeled
microtubules. After acquisition of 2000 frames of images of
expanded samples and SOFI analysis, about 50 nm spatial
resolution was obtained in Ex-SOFI nanoscopy. Moreover,
they demonstrated dual-color Ex-SOFI of Qdots 605 labeled
clathrin-coated pits (CCPs) and Qdots 655 labeled micro-
tubules. Similarly, they utilized three types of Qdots (Qdots
605, Qdots 655, and Qdots705) to label different modified
tubulins simultaneously and obtained multicolor Ex-SOFI
nanoscopy images with better resolution and higher contrast
compared with conventional ExM (Figure 3f).73 Qdots are
composed of cadmium element that show toxicity to living
cells. Therefore, developing low-toxicity or nontoxic Qdots is
useful for super-resolution techniques.

3.3. Carbon Dots (Cdots). In recent years, Cdots have
been widely used in fluorescent ink printing and light therapy
due to a simple synthesis and preparation method.119−121

Cdots have also been applied in STED, SOFI, and STORM
super-resolution fluorescence imaging. Pompa et al. prepared
Cdots with polyethylene glycol (PEG) on the surface using a
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Figure 4. Cdots for super-resolution nanoscopy. (a) Confocal and STED images of Cdots in fixed MCF-7 cells. Adapted with permission from ref
122, Copyright 2014, The Royal Society of Chemistry. (b) Fluorescence time traces of individual Cdots and possible mechanism of on-, off-, and
gray states of Cdots (upper-panel). Comparison of wide-field and second-order SOFI images of Cdots in Saos-2 cells and corresponding line-scan
profiles. Adapted with permission from ref 123, Copyright 2016, American Chemical Society. (c) Schematic diagram of photoswitchable Cdots.
Wide-field microscopy and STORM nanoscopy of Cdots labeled microtubules and cell membrane. Adapted with permission from ref 124,
Copyright 2017, American Chemical Society.

Figure 5. UCNPs for super-resolution nanoscopy. (a) Energy diagram of high concentration of Tm3+ doped UCNPs with two illumination
schemes (left top panel). Relationship of STED resolution of single-particle UCNPs and the 808 nm depletion laser intensity (right top panel).
Confocal and STED nanoscopy of 8% Tm3+-doped UCNPs and corresponding line-scan profiles (lower panel). Adapted with permission from ref
132, Copyright 2017, Nature Publishing Group. (b) Optical depletion mechanism of the 455 nm upconversion luminescence in NaYF4:18% Yb3+,
10% Tm3+; STED nanoscopy of UCNPs labeled cytoskeleton. Adapted with permission from ref 133, Copyright 2017, Nature Publishing Group.
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laser ablation method.122 Single-particle Cdots achieved a
resolution of 54 nm when applied in STED. As shown in
Figure 4a, after 48 h of coincubation of Cdots and MCF-7
cells, the STED images show that the best resolution obtained
was 30 nm. However, Cdots were not able to label specific
subcellular targets; they only showed distribution spreading in
the cytoplasm, indicating that further development is needed
for functional imaging for subcellular structures.122 Chizhik et
al. prepared green luminescent Cdots using citric acid and urea
as carbon and nitrogen sources by hydrothermal synthesis.
Single-particle fluorescence intensity of Cdots indicated that
Cdots show obvious photoblinking properties. By incubating
Cdots with Saos-2 cells, the super-resolved fluorescence image
with a spatial resolution of 180 nm can be reconstructed by
second-order SOFI analysis (Figure 4b).123 Recently, Huang et
al. prepared photoblinking Cdots by mixing carbon powder
and citric acid by centrifugation. The long off-time cycle
indicated the Cdots are suitable for STORM imaging. As
shown in Figure 4c, they conjugated Cdots with secondary
antibody IgG, which allows labeling of subcellular structures
with high specificity. The STORM results showed that about a
64 nm resolution can be achieved of Cdots-labeled micro-
tubules in HeLa cell.124 For Cdots, the functionalization for
specific subcellular labeling is still a challenge. The
bioconjugation of Cdots is crucial for their applications in
super-resolution imaging techniques.
3.4. Upconversion Nanoparticles (UCNPs). Most

luminescent materials show down-converted emission under
light excitation. A series of unique materials show opposite
properties with frequency upconversion under long-wavelength
excitation. The upconversion nanoparticles (UCNPs) are
usually composed of lanthanide compounds and are of
particular applications in bioimaging, biosensing, and nano-
medicine.125−129 Interestingly, UCNPs have also been applied
in super-resolution nanoscopy.
At the nanometer scale, the phase, dimension, and doping

level of lanthanide-doped UCNPs can be precisely con-
trolled.130,131 The inorganic crystals doped with lanthanide
ions can easily establish a population inversion caused by the
metastable energy level of the trivalent lanthanide ions and can
produce amplified excited emission at lower pump power. Jin
et al. prepared UCNPs doped with high concentration (8%) of
thulium ions (Tm3+) NaYF4:20%Yb3+, 8%Tm3+.132 Under 980
nm laser illumination, the high-concentration doping of Tm3+

enhanced the interaction between Tm3+ and results in internal
cross relaxation, indicating a rapidly increasing population in
3H4 energy level, which is similar to the photon avalanche
effect. This process resulted in population inversion relative to
the 3H6 ground energy level. At this time, under the trigger of
808 nm laser, the transition from 3H4 to

3H6 energy levels can
easily occur under stimulated emission. Thus, by illuminating
with 980 and 808 nm laser simultaneously, the up-converted
blue emission of Tm3+ from 1G4 to

3H6 ground energy level
was inhibited, competing with the stimulation emission of 808
nm; the energy level diagram of UCNPs is shown in Figure 5a.
This phenomenon exactly meets the requirements of STED
super-resolution imaging technology for fluorescent probes.
They built a STED imaging platform for UCNP probes with a
980 nm laser as excitation light source surrounding with a
doughnut-shaped 808 nm depletion laser. Figure 5a shows the
single-particle STED nanoscopy of NaYF4:20%Yb3+, 8%Tm3+

UCNPs, indicating about 28 nm spatial resolution.132

At the same time, Zhan et al. prepared a higher
concentration of Tm3+ (10%) doped in NaYF4:18%Yb

3+

UCNPs and obtained about 66 nm spatial resolution single-
particle STED nanoscopy.133 They also demonstrated dual-
color UCNPs based STED nanoscopy by introducing
NaGdF4:40%Yb

3+, 10% Tm3+@NaGdF4:15% Tb3+ core−shell
structures. With the catalysis of N-(3-(dimethylamino)propyl)-
N′-ethylcarbodiimide hydrochloride (EDC), they prepared
carboxyl functionalized UCNPs and conjugated with antibod-
ies. As shown in Figure 5b, they labeled microtubules of HeLa
cells, and about 82 nm spatial resolution was obtained in
STED nanoscopy with functionalized UCNPs.133 Jin et al.
demonstrated a UCNPs based near-infrared emission satu-
ration (NIRES) nanoscopy for deep tissue super-resolution by
using a 980 nm doughnut laser beam and detecting at 800 nm.
In liver tissue slices, about 50 nm resolution of single UCNPs
was achieved.134 Ågren et al. modified the emission intensity of
UCNPs by adopting a high-sensitizer (Yb3+) doping strategy.
The strategy of enhanced emission intensity and accelerated
emission kinetics of UCNPs and a spatial resolution of 72 nm
was readily achieved.135 The main restriction of UCNPs
applied in super-resolution nanoscopy is the specific
subcellular labeling and biocompatibility. Both of these
drawbacks may be solved with new strategies, such as surface
chemistry and bioconjugation methods.

3.5. Aggregation Induced Emission (AIE) Nano-
particles. Aggregation-induced emission luminogens (AIE-
gens) are a class of organic molecules that show luminescence
in the aggregate state. This is opposite to the conventional
aggregation caused quenching (ACQ) dyes and was first
discovered by Tang et al. in 2001.136 The AIE phenomenon is
usually considered to be two restriction mechanisms:
restriction of intramolecular rotation (RIR) and restriction of
intramolecular vibration (RIV).137,138 Because of the unique
luminescence properties, AIEgen have great potential in
biomedical fluorescence applications. Tang et al. developed a
tetraphenylethylene (TPE) derivative named o-TPE-ON+,
which is an oxygen-promoted photoactivation AIE bioprobe.
Spontaneous blinking without any additives and specificity to
mitochondria via membrane potential indicate that o-TPE-ON
+ is suitable for SMLM in live and fixed cells. They obtained
about 104 nm spatial resolution of mitochondria in fixed HeLa
cell and monitored the dynamic process of mitochondria in
nanoscale in living cell using STORM nanoscopy.139 Tang et
al. also prepared colloidal mesoporous silica loaded 2,3-bis(4-
(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl) fumar-
onitrile (TTF) AIE nanoparticles incubated with HeLa cells
and applied in STED nanoscopy. Benefiting from high
resistance to photobleaching and high STED efficiency
(more than 60%), they obtained about 30 nm lateral spatial
resolution.140 Qian et al. developed a type of mitochondria
target AIEgens with higher STED efficiency (about 80%) and
observed the dynamic motion, fusion, and fission of
mitochondria with about 92 nm resolution under STED
nanoscopy.141 We synthesized a series of oxetane-substituted
AIEgens (AIE-OXE) and developed a general approach for
preparing small and bioconjugated AIE nanoparticles for
specific labeling of cellular targets. We labeled microtubules in
fixed cells and obtained continuous subcellular STED nano-
scopy with 95 nm spatial resolution.142

3.6. Polymer Dots (Pdots). Polymer dots (Pdots)
consisting of highly fluorescent conjugated polymers have
attracted considerable interest in recent years.143−150 Con-
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jugated polymers are widely used in luminescent devices, solar
cells, field effect transistors, and other optoelectronic devices.
Pdots can be conveniently prepared by a nanoreprecipitation
method, and the size of Pdots can be modified by varying
preparation conditions.151−154 Pdots with spectrum ranging
from the visible region to the near-infrared region have been
widely used in fluorescence imaging, optical sensors, photo-
acoustic imaging, and phototherapy applications.155−163

The excellent photophysical properties, such as high
fluorescence brightness, fast fluorescence radiation rate, and
great photostability, make Pdots promising probes for
supersolution imaging. The bright fluorescence of Pdots
yielded a lateral particle tracking uncertainty of 1−2 nm, as
determined from analysis of trajectories of fixed and freely
diffusing particles.164 There is evidence that the fluorescence of
Pdots can be quenched by hole polaron, resulting in a dark
spot in single particle fluorescence.165,166 McNeill et al. have
investigated the polaron motion inside Pdots with an
unprecedented level of detail about charge transport. The
fluorescence centroid was displaced, accompanied by the
movement of dark spots, while the polaron migrated inside the
particles.167 Combined with mean square displacement (MSD)
of centroid displacement, they discovered that the single-
particle fluorescence is very sensitive to polaron generation and
recombination dynamics. The polaron dynamics provide a

promising strategy for development of photoswitching probes
for localization based fluorescence nanoscopy.168

We have made efforts to apply Pdots in super-resolution
nanoscopy by optimizing the photophysical property. In 2016,
we prepared two types of photoblinking Pdots (PFBT and
CN-PPV) by regulating size distributions (Figure 6a). By
single-particle SOFI reconstruction of 1000 frames of raw data,
we demonstrated Pdots based SOFI nanoscopy for the first
time. As shown in Figure 6b, after fourth-order SOFI
reconstruction, the spatial resolution of single-particle CN-
PPV Pdots increased about 2.7-fold as compared with
conventional wide-field microscopy. We realized specific
subcellular labeling with biofunctionalized Pdots. We labeled
mitochondria membrane, nuclear pore, and microtubule in BS-
C-1 cells with streptavidin conjugated PFBT and CN-PPV
Pdots (Figure 6c). We achieved 185 nm spatial resolution of
CN-PPV labeled α-tubulin with second-order SOFI recon-
struction, indicating about 1.8-fold resolution enhancement as
compare with wide-field microscopy (Figure 6d). As shown in
Figure 6e, three-dimensional SOFI images of CN-PPV Pdots
labeled mitochondrial membrane of BS-C-1 cells was achieved
by using a spinning disk confocal microscope with rapid
fluorescence imaging capability.169

By choosing different polymer species, blue emission PFO
and red emission PFTBT5 Pdots were obtained. Both PFO

Figure 6. Small photoblinking Pdots for SOFI nanoscopy. (a) Chemical structures and single-particle photoblinking of PFBT and CN-PPV Pdots.
(b) Single-particle SOFI nanoscopy of CN-PPV and corresponding spatial resolution. (c) Subcellular specific labeling images of PFBT and CN-
PPV Pdots. (d) Wide-field microscopy and SOFI nanoscopy images of CN-PPV labeled microtubules in BS-C-1 cells. (e) Three-dimensional SOFI
of CN-PPV Pdots labeled mitochondria membrane in BS-C-1 cell. Scale bar: 1, 10, and 10 μm for (b), (c), and (e), respectively. Adapted with
permission from ref 169, Copyright 2017, John Wiley and Sons.
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and PFTBT5 show obvious photoblinking property. We
demonstrated dual-color subcellular labeling with PFO and
PFTBT5 Pdots in BS-C-1 cells simultaneously. With second-
order SOFI reconstruction of PFTBT5 Pdots labeled CCPs in
BS-C-1 cells, about 1.9-fold spatial resolution enhancement
was seen. The hollow structure of mature CCPs was resolved
with enhanced spatial resolution and signal-to-background
ratio. We demonstrated dual-color SOFI nanoscopy of PFO
labeled CCPs and PFTBT5 labeled microtubules. Based on
intensity profile statistics, an approximate 1.67-fold enhance-
ment of spatial resolution was obtained, and finer structures
were resolved.170

To further improve the resolution of Pdots based SOFI
nanoscopy, we prepared fluorescent dye-doped Pdots with a
cooperative blinking process from the dye ensemble inside the
Pdots. As shown in Figure 7a, with fourth-order SOFI analysis,
we achieved 68 and 90 nm spatial resolution of single-particle
and microtubule labeled with cooperative blinking Pdots,
indicating about 5.3- and 3.6-fold enhancement as compared
with wide-field microscopy.171 The on/off photoblinking
characteristics are key factors for realizing high-order SOFI.
We introduced a strategy to modulate the photoblinking
property by synthesizing multichromophoric system consisting

of donor−acceptor conjugated polymers. A 98 nm spatial
resolution was obtained for microtubules labeled with high-
performance photoblinking Pdots.172 With sufficient brightness
and fluctuations, a higher order of image processing affords a
higher resolution, and in principle, the resolution enhancement
is unbounded. As shown in Figure 7b, we synthesized two
types of BODIPY-based polymer dots (Pdots) with narrow-
band emissions, pronounced fluctuations, and prominent
photostability. A spatial resolution (61 nm) was obtained for
single microtubules labeled by the BODIPY Pdots. Further-
more, we obtained 92 nm resolution in dual-color SOFI images
of PF5BODIPY labeled tyrosinated microtubules and
PF8BODIPY720 labeled mitochondria membrane in BS-C-1
cell.173

Pdots has also been explored for STORM applications.
McNeill and coworkers showed that a fullerene derivative
PCBM can be doped into PFBT Pdots to establish a
fluctuating steady-state population of tens of hole polarons,
which can sufficiently suppress the fluorescence of the Pdots.
However, burst emissions can be released from the PCBM
doped Pdots owing to the fluctuations in the number of charge
carriers. As shown in Figure 7c, they used the PCBM doped
Pdots in STORM nanoscopy and 576 obtained about 33.6 nm

Figure 7. Pdots for super-resolution nanoscopy. (a) Photoblinking traces of cooperative blinking Pdots; fourth-order SOFI images of PFO-
Coumarin6 Pdots labeled microtubules in BS-C-1 cells and line-scan profiles. Adapted with permission from ref 171, Copyright 2019, American
Chemical Society. (b) Eighth-order SOFI nanoscopy of single-particle and microtubule labeled with PF5BODIPY565 Pdots. Adapted with
permission from ref 173, Copyright 2020, The Royal Society of Chemistry. (c) A sequence of fluorescence microscopy images showing blinking
behavior of 20% PCBM-doped PFBT Pdots and the three-dimensional histogram of localized centroid position extracted from one blinking 20%
PCBM-PFBT Pdot; Three-dimensional fluorescence intensity map of switched “on” Pdots in E. coli and scatter plot of super-resolution image
reconstructed from the localized positions of blinking Pdots. Adapted with permission from ref 168, Copyright 2019, American Chemical Society.
(d) Long-term STED bioimaging of PDFDP Pdots in HeLa cells. Adapted with permission from ref 175, Copyright 2018, John Wiley and Sons.

Bioconjugate Chemistry pubs.acs.org/bc Review

https://dx.doi.org/10.1021/acs.bioconjchem.0c00320
Bioconjugate Chem. 2020, 31, 1857−1872

1866

https://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00320?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00320?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00320?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.bioconjchem.0c00320?fig=fig7&ref=pdf
pubs.acs.org/bc?ref=pdf
https://dx.doi.org/10.1021/acs.bioconjchem.0c00320?ref=pdf


spatial resolution with a localization precision of ∼0.6 nm.168

In a latest study, McNeill et al. employed the doping strategy
to modulate the hole-polarons inside the Pdots, thus regulating
the spontaneous switching and photoswitching properties to
operate in two super-resolution imaging modes. By optimizing
the doping ratio and illumination scheme of photoactive laser
to regulating the “ON” state duty cycle, they obtained
spontaneous switching and photoswitching enabled STORM
nanoscopy. They demonstrated 3D-STORM imaging of
microtubules and CCPs with about 45 nm spatial resolution
in fixed BS-C-1 cells. The ring-shaped structure of CCPs in
dual-color STORM images can be observed, which is
consistent with the hollow spherical structure of CCPs.174

Besides the SOFI and STORM application of Pdots, Fang et
al. prepared PDFDP Pdots and applied in STED nanoscopy,
indicating that Pdots are a new class of fluorescent probe for
STED nanoscopy. The PDFDP Pdots show about 77 nm
spatial resolution in STED image and excellent photostability
in STED nanoscopy incubated with fixed HeLa cells.175 Pdots
with high emission brightness, high quantum yield efficiency,
and biocompatibility are a type of emerging fluorescent probes
with versatile conjugation ability. With sufficient developing
and new strategies to manipulate the photophysical properties,
Pdots will show a wide range of applications in fluorescent
nanoscopy.

4. CONCLUSIONS AND PERSPECTIVES
The development of super-resolution fluorescence imaging
techniques is of great significance and provides a great deal of
detail in various studies in cell biology and biomedicine. The
performance of these imaging techniques is largely dependent
on the photophysical properties of the fluorescent probes.
Because the working principles of the super-resolution
techniques are different, each imaging modality has specific
requirements for the fluorescent probes in terms of their
photophysical parameters. Until now, a large number of
fluorescent probes have been developed for super-resolution
nanoscopy, resulting in visualization of subcellular spatial
organization, molecular interaction, molecular counting, and
temporal dynamics under unprecedented resolutions. Despite
the versatile progress, each of the fluorescent probes has its
own advantages and shortcomings and should be tailored in
case-specific studies as follows: (i) Fluorescent proteins and
organic dyes are mature and the most widely used probes in
supersolution imaging, but they suffer from poor photostability
and low brightness, which restricted long-term tracking in
living cells for monitoring the dynamic processes and the
interactions between different subcellular organelles. (ii) The
exogenous nanoparticle probes showed improved brightness
and photostability, which are advantageous for long-term cell
imaging. However, high-quality specific subcellular labeling
remains a challenge for the nanoparticle labels because the
complex interactions of nanoparticles with cellular structures
often results in intractable nonspecific binding. In addition,
conjugation of specific biomolecules to the nanoparticles also
encounters issues such as cross-linking, aggregation, and
colloidal stability, as each nanoparticle often has multiple
reactive groups. A common issue for those exogenous
nanoparticles is the difficulty in live-cell imaging. Development
of cell-permeable probes or utilizing peptide vehicle may help
to deliver nanoparticles into living cells. (iii) So far, application
of super-resolution for in vivo and clinical samples with large
imaging field and deep imaging depth are still big challenges. In

optical imaging techniques, the spatial resolution and the
imaging depth are mutually restricted factors. Therefore,
developing an imaging system with super-resolution, large
field of view, and imaging depth is a key problem to be solved.
(iv) Finally, it is worth mentioning that most of the super-
resolution techniques, such as STED, SIM, and STORM, rely
on complicated imaging setups, while SOFI and ExM rely
exclusively on fluorescent probes and the biological sample.
ExM has been developed rapidly by virtue of sample expansion
and imaging on commercial confocal microscope. Combina-
tion of ExM with STED, STORM, and SOFI may be a
promising solution to further improve the spatial resolution in
imaging of biological tissues. In all cases, a common
requirement to improve the imaging quality is that the probe
conjugates should emit bright signals and exhibit specific
labeling with minimal nonspecific binding in subcellular
environment.
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