

Plug-and-play Diffusion Models for Image Compressive Sensing

with Data Consistency Projection

Xiaodong Wang^{1,2,*}, Ping Wang^{1,2,*}, Zhangyuan Li^{1,2}, Xin Yuan² ¹Zhejiang University ²Westlake University

Introduction

We investigate the between plug-and-play and diffusion model for inverse problem.

- Acquiring the image x is an inverse problem.
- Solving an inverse problem is an ill-posed one-to-many mapping problem.



Methodology

Maximum a posteriori probability (MAP) estimator for inverse problem

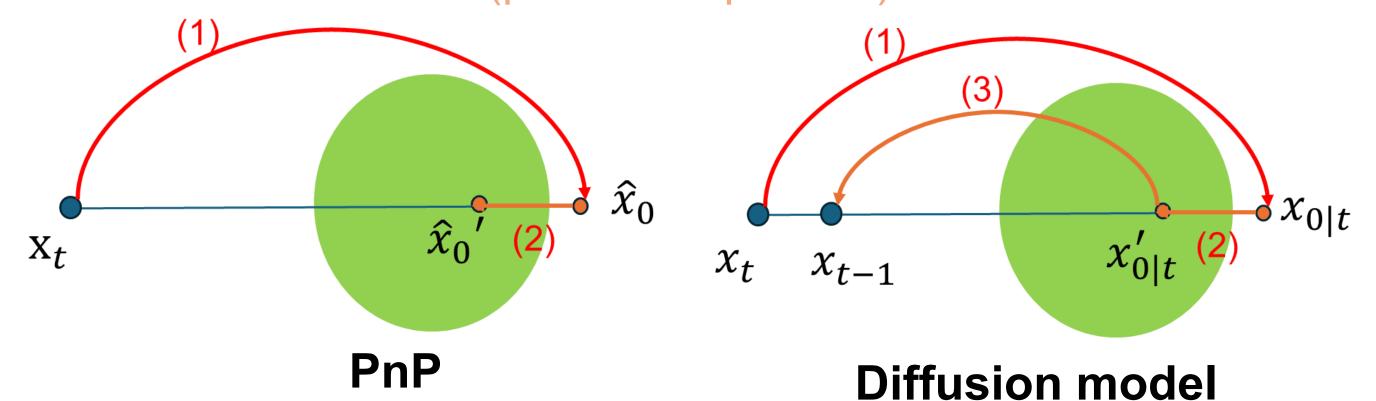
$$\hat{x} = \arg\min_{x \in \mathcal{R}^n} \frac{1}{2\sigma^2} ||y - Ax||_2^2 + h(x), \quad h(x) = -\log(\mathcal{P}_x(x))$$

Proximal operator is an optimization-based image denoiser

$$\operatorname{prox}_{\sigma}(z) = \underset{x \in \mathcal{R}^n}{\operatorname{arg\,min}} \frac{1}{2\sigma^2} \|z - x\|_2^2 + h(x)$$

$$x^t \leftarrow \operatorname{prox}_{\sigma}(z^t)$$
 $z^t \leftarrow x^t - \gamma W \nabla_{x^t} ||y - Ax^t||_2^2$

Plug-and-play (PnP) & Diffusion use denoiser as prior (proximal operator)



Diffusion model Ours: Fused update of GAP and HQS for Diffusion

PnP and Diffusion

data-fidelity and

measurement-

denoising updating.

We propose a fused

guidance (Generalized

Alternating Projection

and Half Quadratic

Splitting) for data-

fidelity updating.

model share the same

Algorithm 1 Fused Data Guidance for Diffusion Sampling

Require: Observation y, SPI forward model H, score function, diffusion schedule $\{\sigma_t\}$, fusion weights $\{\delta_t\}$

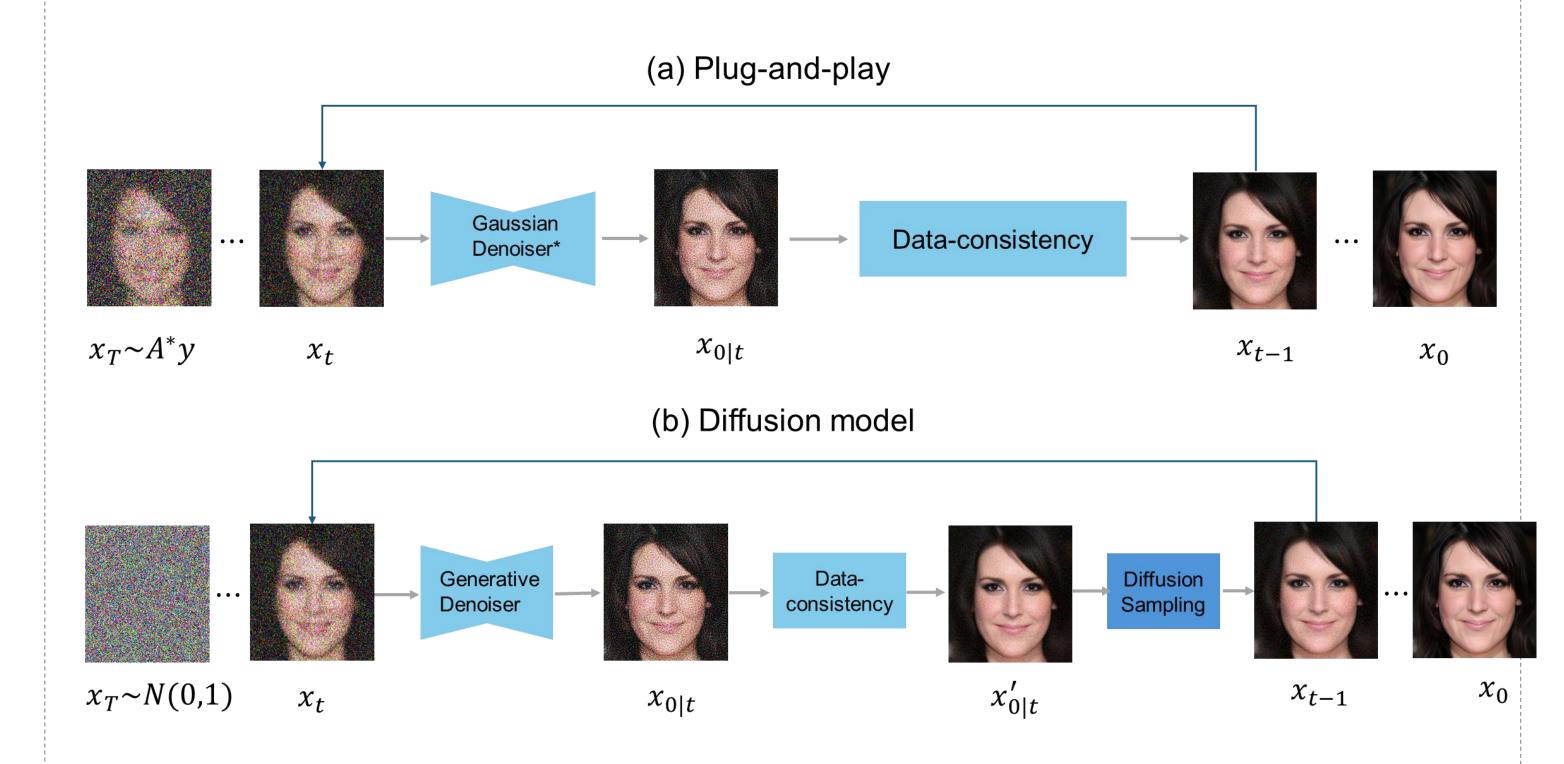
- 1: Initialize $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$
- 2: for t = T to 1 do
- // Denoise
- $\mathbf{g}_{\mathsf{GAP}} \leftarrow \mathbf{x}_{0|t} + \mathbf{H}^{\dagger}(\mathbf{y} \mathbf{H}\mathbf{x}_{0|t})$ // GAP term $\mathbf{g}_{HQS} \leftarrow (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{I})^{-1} (\mathbf{H}^T \mathbf{y} + \lambda \mathbf{x}_{0|t}) // HQS \text{ term}$
- 6: $\mathbf{x}'_{0|t} \leftarrow (1 \delta_t)\mathbf{g}_{GAP} + \delta_t\mathbf{g}_{HQS}$ // Fused term
- 7: $\hat{\epsilon}_t \leftarrow \frac{\left(\mathbf{x}_t \sqrt{\alpha_t} \, \mathbf{x}'_{0|t}\right)}{\sqrt{1 \alpha_t}}$
- $\epsilon_t \sim \mathcal{N}(0, \mathbf{I}_n)$
- 9: $\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}'_{0|t}$

$$+\sqrt{1-\bar{\alpha}_{t-1}}\left(w_t\sqrt{1-\zeta}\,\hat{\epsilon}_t+\sqrt{\zeta}\,\epsilon_t\right)$$

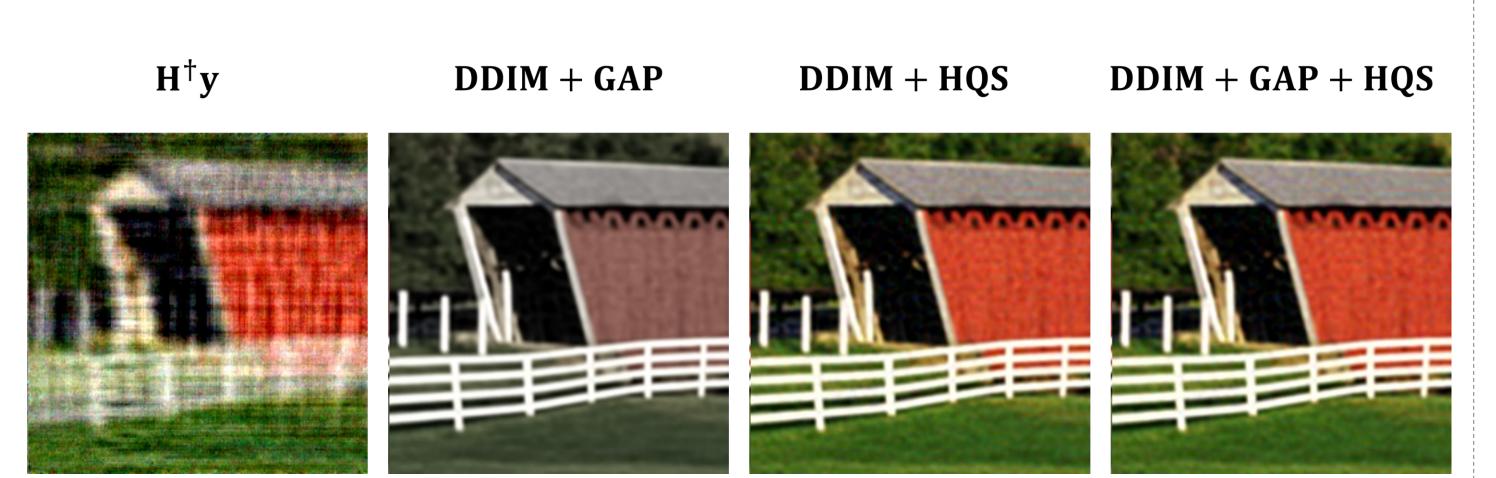
- // DDIM Sampling
- 11: end for
- 12: return x_0

Results

We explore the connection between PnP and diffusion model



Visual experiments when incorporating hybrid data-fidelity



Experimental Analysis

Table 1. Reconstruction metrics comparison across methods.

Method	PSNR (dB)	SSIM	LPIPS
$\mathbf{H}^{\dagger}\mathbf{y}$	20.55	0.39	0.54
DDIM+GAP	24.09	0.62	0.33
DDIM+HQS	24.64	0.67	0.38
DDIM+GAP+HQS	24.76	0.68	0.37

Table 2. Reconstruction Results across different CRs.

CR	PSNR	SSIM	LPIPS
1%	21.23	0.47	0.56
5%	24.76	0.68	0.37
10%	25.66	0.70	0.25
20%	27.01	0.78	0.18

Conclusions & References

We investigate the between plug-and-play and diffusion model for inverse problem.

- Plug-and-play and Diffusion model share the same iterative step in data-fidelity and denoising
- We proposed a hybrid data-fidelity guidance for diffusion model. And it has been validated effective in image compressive sensing.